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Abstract: In the domain of neuroscience, electroencephalography (EEG) holds a pivotal role in determining the inner 

workings of the human brain, offering real-time insights into cognitive processes, emotions, and neurological disorders. 

While numerous EEG channels are available in a typical EEG brain-computer interface, selecting the optimal subset 

for emotion classification poses a significant challenge. Conventional channel selection methods overlook the 

biological relevance of specific brain lobes in emotional processing, leading to a lack of contextual specificity. This 

paper introduces a novel approach, by using a biologically informed channel selection approach in the EEG signals. 

The brain is segmented into various groups and sub-groups and the ability of the channels associated with those groups 

is determined using time and frequency domain features. The ability of each of these groups and sub-groups to attain 

higher performance is determined through the accuracy outcomes driven by the support vector machines (SVM). The 

ability of the selected channels in making accurate classification has been determined using a deep learning model in 

determining valence and arousal classes, and making a comparison with the selected channels-led classification 

methods. The approach is validated using the DEAP dataset, demonstrating its potential to enhance EEG-based 

emotion classification accuracy and efficiency. This innovative methodology offers a promising avenue for future EEG 

research, allowing customization based on the specific emotions under study, psychological intervention, and 

streamlining the setup process while maintaining the highest levels of accuracy, reaching an average of 95.7% for 

intra-subject and 94.65% for cross-subject emotion classification. 
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1. Introduction 

In modern times, the domain of neuroscience has 

undergone many transformations and expansions 

enabling medical practitioners to extract relevant 

information related to emotions, anomalies, and other 

mental states [1, 2]. In doing so, 

Electroencephalography (EEG) is a widely used non-

invasive technique that allows medical practitioners 

to gain insight into the inner workings of the human 

brain [3]. EEG allows inferring the real-time 

activities taking place in the brain under a precise 

temporal resolution and a higher degree of precision 

[4, 5]. This permits medical practitioners to probe 

into the mental processes associated with cognitive 

activities, emotions, and other neurological disorders. 

The advancements made in the domain of EEG by 

making use of suitable machine learning methods, 

and signal processing tools have further harnessed 

their power in making real-time diagnosing, and 

inferring anomalies during their inception activating 

a whole new domain called brain computer 

interfacing (BCIs) [6, 7]. EEG systems have been 

designed to meet research and clinical needs, and thus 

are available in various configurations and forms. 

The number of electrodes and their positions play a 

key role in capturing the desired information from the 

brain. In typical EEG systems, the electrodes in the 

form of an array or a cap are strategically placed 
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across various areas of the scalp. Internationally, the 

standard systems involve the use of 10-20 electrodes 

that are positioned across various locations of the 

scalp and are represented by a combination of letters 

and numbers (e.g. Fp1, T5, etc.) depending upon the 

specific region they belong to [8–10]. In other 

systems used for research and clinical purposes, the 

number of electrodes (or channels) can range from 

tens to hundreds as well, since the employment of a 

higher number of channels can allow capturing the 

details with fine spatial resolution, enabling 

researchers to infer even the subtle brain activities 

and patterns. While individual channels capture the 

electrical localized neural information, the 

collaboration of multiple channels can offer holistic 

picture activities taking place in different parts of the 

cerebral cortex [10, 11]. Therefore, such a 

combination of the individual and collaborative EEG 

channels helps capture various processes in local and 

global brain regions under different spatial scales.  

The use of a 32-channel EEG system is another 

commonly used standard typically for research 

purposes and is available in resources like PhysioNet, 

etc [12]. Such a system poses several challenges in 

the context of emotion classification where the 

selection of the optimal subset of channels is non-

trivial for making the desired analysis. Using a higher 

number of channels despite offering finer spatial 

information can lead to increased data dimensionality 

and risk of overfitting. Thus, it is imperative to 

maintain the right balance between the density of the 

channels and their computational feasibility. 

Moreover, the EEG possesses inherent limitations of 

spatial resolution compared to other neuroimaging 

methods like fMRI [13]. Such spatial resolutions 

make it challenging to target the specific brain 

regions of the cerebral cortex associated with 

emotion under complex interactions between the 

brain areas. Furthermore, the emotions are also 

simultaneously distributed across various cortical 

regions, while also having a bias towards one of these 

regions. Thus, having a lack of one-to-one mapping 

between emotion and cortical areas makes the 

interpretation of EEG data and its classification more 

challenging [14, 15]. The individual variability in 

emotion processing and the dynamic nature of 

emotions further pose challenges in the selection of 

the right set of channels of the cortical regions. 

In EEG-based emotion recognition tasks, channel 

selection is a critical step to optimize the use of 

available EEG channels while minimizing noise and 

irrelevant information. Several channel selection 

methods are employed, including statistical 

techniques like t-tests or ANOVA to identify 

channels with significant differences in signal 

characteristics during specific emotional conditions 

[16]. Spatial filtering methods like principal 

component analysis (PCA) [17] or independent 

component analysis (ICA) [18] help extract relevant 

spatial patterns from EEG data. Feature selection 

algorithms such as recursive feature elimination 

(RFE) [19] and mutual information rank channels 

based on their contribution to classification tasks [20], 

[21]. Forward and backward selection methods 

iteratively add or remove channels to enhance 

classification performance. Expert knowledge allows 

domain experts to manually select channels based on 

a prior understanding of brain regions associated with 

emotions. Information theory, filter banks, hybrid 

approaches, and cross-validation techniques are also 

utilized for effective channel selection. Additionally, 

methods like Relief [22] and ReliefF fall under the 

category of feature selection algorithms and can be 

employed to identify informative EEG channels in 

emotion recognition tasks. These methods focus on 

selecting relevant features (in this context, EEG 

channels) for classification tasks by evaluating the 

importance of each feature (channel) based on their 

ability to discriminate between different classes 

(emotional states). Other methods in this category for 

EEG-based emotion recognition include chi-squared 

statistics, information gain, and fisher score, among 

others [23]. These methods assess the discriminatory 

power of EEG channels and select those that 

contribute the most to the classification of emotional 

states. 

One of the key limitations of all of these existing 

channel selection approaches is their insensitivity 

toward analyzing the relevance of specific lobes of 

the brain to emotional states. The EEG electrode 

placement and distribution are administered by 

various areas on the scalp including the frontal lobe, 

temporal lobe, occipital lobe, and central and parietal 

lobe [10]. The frontal lobe (ventromedial prefrontal 

cortex) is known to be associated with emotion 

regulation and decision-making processes [24]. Thus 

its associations with stimuli, impulse control, and 

self-regulation of emotions are significant. Existing 

channel selection methods often do not prioritize 

frontal lobe channels specifically for capturing the 

regulatory aspects of emotions. This means that the 

selection may not adequately account for the 

prefrontal cortex's contributions to emotional 

processing and regulation. The temporal lobe 

(superior temporal sulcus) [25] is non-trivial in 

capturing the emotional cues from social stimuli in 

the form of facial expressions or voice prosody. 

Existing methods may not emphasize the importance 

of temporal lobe channels for capturing social and 

interpersonal aspects of emotional processing. While 
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the occipital lobe [26] is primarily associated with 

visual processing, it is relevant for emotional states 

as it processes emotional content in visual stimuli. 

Emotional scenes, facial expressions, and other 

visual emotional cues are processed here. Traditional 

channel selection approaches may not prioritize 

occipital lobe channels for capturing emotional 

responses to visual stimuli. However, including them 

can enhance the understanding of how emotional 

information is extracted from the visual environment. 

The central lobe, particularly the central cortex [27] 

plays a role in motor control and sensorimotor 

integration. While not traditionally considered a 

primary center for emotional processing, it is 

involved in emotional responses related to body 

movements and action-related aspects of emotions. 

The parietal lobe, particularly contributes to aspects 

of spatial perception and attention. It can be involved 

in emotional processing, especially in tasks requiring 

attention to emotional stimuli or spatial aspects of 

emotional experiences. 

By focusing on selecting specific lobes of the 

brain, rather than individual channels, researchers 

can explore the role of individual pre-segmented 

EEG electrode placement regions. This approach 

allows for the incorporation of the known relevance 

of specific lobes to emotional states, ensuring that 

channels within these regions are adequately 

considered when developing EEG-based emotion 

classification models. It provides a more biologically 

informed and comprehensive perspective on 

emotional processing and regulation. Aside from that, 

this may contribute to future research and knowledge 

regarding the intervention of specific brain regions in 

emotional disorders. 

The focus of this paper lies in introducing an 

innovative approach to EEG-based emotion 

classification by shifting the focus from traditional 

channel selection methods to a feature-led 

classification strategy. Instead of selecting individual 

channels, this approach centers on the selection of 

specific lobes of the brain (along with their 

corresponding channels) known to be biologically 

relevant to emotional processing. This departure from 

convention represents an exploration and 

advancement in the field of EEG-based emotion 

recognition. By adopting this approach and exploring 

the potential benefits it offers, the paper opens up new 

avenues for EEG research. Upon attaining optimal 

performance, it could revolutionize the way 

researchers approach electrode placement in EEG 

experiments related to emotion recognition. Instead 

of using a one-size-fits-all approach for electrode 

positioning, researchers would have the opportunity 

to tailor electrode placement based on the specific 

type of emotion under investigation. This 

customization has the potential to significantly 

reduce both the effort required in electrode setup and 

the number of channels needed for accurate emotion 

classification. The paper utilizes the DEAP dataset, 

which includes classes of arousal (high and low) or 

arousal (high and low), to demonstrate the 

effectiveness of this approach. The dataset serves as 

a valuable resource for validating the proposed 

method and showcasing its potential benefits in 

improving EEG-based emotion classification 

accuracy. Thus the overall contribution of the paper 

is presented below: 

 

i. The selection of channels is based on 

biologically informed brain regions. The 

EEG-distributed electrodes (channels) are 

segmented into groups and sub-groups based 

on biological and cognitive characterizations. 

The ability of channels in each of these 

groups/sub-groups to make accurate 

classifications of the cognitive tasks is 

analyzed using time and frequency domain 

features and SVM-led classification.  

ii. The selected channels (corresponding to the 

groups/subgroups) have been subjected to 

deep classification in valence and arousal 

classes to determine their effectiveness in a 

comparative manner (relative to existing 

studies).  

iii. Potential to revolutionize electrode 

placement strategies, allowing customization 

based on the type of emotion under study, 

thereby reducing setup efforts and channel 

requirements. 

 

The rest of the paper has been structured as 

follows. Section 2 presents the related works that 

primarily make use of channel selection methods and 

deep learning architectures to make classifications. 

Section 3 presents the methodology adopted in this 

paper including the dataset employed and the details 

of the channel selection model and deep learning 

classifier. Section 4 presents the results and 

discussion, and section 5 concludes the study.  

2. Related work 

To further evaluate the contribution and 

effectiveness of our proposed model and to make a 

comparative analysis later, several EEG 

classification studies have been focused on that make 

use of one of the channel selection methods followed 

by a machine learning-based classification. The 

authors in [28] present a channel selection method 
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introduced for motor imagery (MI) classification 

based on distinctive correlation coefficient values. It 

forms channel groups using strong correlations and 

computes the fisher score using filter-bank CSP 

(FBCSP). The results show a mean classification 

accuracy of 88.62%. In [29], emotion recognition 

using multi-channel EEG data from the DEAP 

database is explored. The study achieves average 

recognition accuracies of 72.03% and 71.7% using 

various EEG features and applies the ReliefF 

algorithm to select optimal combinations of 6 and 13 

channels, paving the way for the development of 

portable emotion recognition devices. Authors in [30] 

introduce a channel selection method for EEG-based 

emotion recognition by employing normalized 

mutual information (NMI) to select an optimal subset 

of EEG channels, maintaining a high accuracy of 

74.41% for valence and 73.64% for arousal on the 

DEAP database. The selected channels align with 

cortical areas associated with general emotion tasks, 

demonstrating the effectiveness of the approach.  

In [31], the authors propose a channel selection 

method using stepwise discriminant analysis (SDA). 

The study employs EEG data from a public emotion 

dataset recorded with 62 EEG channels for three 

target emotions (positive, negative, and neutral). 

Differential entropy features from five frequency 

bands are extracted (delta, theta, alpha, beta, and 

gamma), and SDA selects optimal channels based on 

the Wilks Lambda score. The EEG features are then 

classified using linear discriminant analysis (LDA). 

Notably, the highest accuracy of 99.85% is achieved 

with 15 selected channels, demonstrating the 

reliability of alpha, beta, and gamma frequency bands 

for EEG emotion recognition. Authors in [32], 

incorporate the mRMR feature selection algorithm 

for channel selection and employ the extreme 

learning machine with kernel for classification. By 

employing this approach, channels have been 

reduced from 32 to 22 attaining a classification 

accuracy of 79.37%. [33] focuses on epileptic seizure 

prediction using EEG signals and patient-specific 

EEG channel selection methods based on 

permutation entropy (PE) values, integrating K 

nearest neighbors (KNNs) and a genetic algorithm 

(GA), and using SVM as the classifier. Results 

indicate that using patient-tailored channels 

significantly improves prediction rates, with an 

average accuracy increase of 10.58%, sensitivity 

increase of 23.57%, and specificity increase of 5.56% 

compared to SVM testing with all channels. [34] 

introduces a channel selection method based on 

dynamic channel relevance (DCR) scores for EEG 

signals in the BCI. It uses support vector machines 

(SVM) for classification and achieves superior 

accuracy (85.4%, 80.33%, and 85.20%) on three EEG 

datasets while reducing the number of channels and 

computation time compared to state-of-the-art 

methods. The authors in [35] employed a channel 

selection method utilizing a neuro-evolutionary 

algorithm (NEA) with modified particle swarm 

optimization (MPSO) and common spatial pattern 

feature extraction. They used a multi-layer 

perceptron neural network (MLP-NN) as the machine 

learning model, achieving an accuracy of 89.95% on 

their EEG dataset and 89.83% on the BCI 

competition IV ECoG dataset. The article in [36] 

focused on developing a model for emotion 

recognition from non-stationary EEG signals. The 

study employed ReliefF and neighborhood 

component analysis (NCA) for optimal electrode 

selection and used CNNs for feature extraction, 

achieving accuracy rates of 90.76% for valence, 

92.92% for arousal, and 92.97% for dominance. 

The techniques presented in this section possess 

certain limitations leading to a need for adopting a 

biologically informed channel selection approach as 

proposed in this study. The use of the filter-bank 

CSP-led approach makes use of predefined frequency 

bands that may fail to capture all the relevant 

information due to the static nature of the analysis. 

ReliefF method although being commonly used is 

sensitive to the distribution of the dataset. When the 

distribution is biased or associated with outliers, the 

technique may result in suboptimal results. The idea 

of using normalized mutual information (NMI) 

assumed an independent nature of the features. This 

may not be true for the channels which are 

biologically related. The use of a neuro-evolutional 

algorithm (NEA) requires a higher level of 

complexity especially for large datasets like those of 

EEG. This leads to extensive computations. mRMR-

based feature selection method resides on a linear 

nature of the relationship establishment. The method 

may fail to capture non-linear relationships in the 

EEG channels, leading to limited effectiveness. The 

Patient-Specific EEG channel selection method may 

work well for the intra-subject case, yet its ability to 

work in cross-subject scenarios remains limited. The 

use of dynamic channel relevance (DCR) scores is 

sensitive to the temporal changes in the data. Any 

rapid changes in the time domain signals can lead to 

higher instability in outcomes. The HOLO-FM 

methods are complex due to the holographic mapping 

process making it difficult to analyse the biologically 

significant processes. 

These studies and limitations have been treated 

as a benchmark to make a performance comparison 

with the proposed method later. 
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3. Materials and method 

3.1 Datasets  

The study makes use of an open-source DEAP 

dataset [37]. The data involves EEG and peripheral 

physiological signal recordings from 32 healthy 

participants aged between 19 and 37. EEG data was 

recorded using 32 active AgCl electrodes, following 

the international 10-20 system, with a sampling rate 

of 512 Hz. Additionally, 13 peripheral physiological 

signals were recorded. The experiment protocol 

included participants watching music videos and 

performing self-assessments for arousal, valence, 

liking, and dominance. It includes 120 videos, each 

lasting 1 minute, for affective highlight analysis. 

These videos were selected using last.fm affective 

tags and manual curation. Each video received 14 - 

16 ratings on the scales of arousal, valence, and 

dominance, using a discrete scale ranging from 1 to 

9. For the physiological experiment, 32 participants 

were involved, and 40 videos were selected from the 

online annotated dataset based on clear responses. 

Participants rated these videos on the scales of 

arousal, valence, dominance, liking (video 

preference), and familiarity (familiarity with the 

video). The EEG data was preprocessed, down-

sampled to 256 Hz, and high-pass filtered at 2 Hz. 

Welch's method was used to extract frequency power 

in various bands (theta, alpha, beta, and gamma), and 

correlations between power changes and subjective 

ratings were computed. The dataset provides valuable 

information for studying the relationship between 

EEG signals and emotional responses.  

3.2 Brain areas weighting 

The core idea of our model is to identify the 

brain areas and respective channels that can help us 

attain higher classification rates under the valence 

and arousal classes. To attain this, the study 

underwent numerous steps. Initially using a random 

split operation, a subset D_s of the EEG data D 

having N samples and M channels from across 

various subjects was extracted.  

Each sample x_i in the selected EEG data has 

been segmented into consecutive 4-second windows 

W with a 1-second overlap, allowing for a 

comprehensive analysis of temporal aspects. On the 

windowed signals X_(i,j) (i is sample index, and j is 

window index), we employed a set of time and 

frequency domain-selected features, namely root 

mean square F^RMS, spectral centroid F^SC, 

spectral bandwidth F^SB, and spectral roll-off F^SR,  

 

Algorithm 1: Features extraction approach 

Inputs: 𝑫𝒔, 𝑿𝒊,𝒋 

Outputs: Features 𝑭  

Process Starts: 

1. For 𝑖, 𝑗 in 𝑋𝑖,𝑗 do 

2. 𝐹𝑖,𝑗
𝑅𝑀𝑆 ←   √

1

𝐿
 ∑ 𝑋𝑖,𝑗[𝑙]2𝐿

𝑙=1  

3. 𝐹𝑖,𝑗
𝑆𝐶 ←

1

𝐿
∑ 𝑓[𝑙]. |𝑋𝑖,𝑗[𝑙]|𝐿

𝑙=1  

4. 𝐹𝑖,𝑗
𝑆𝐵 ← √

1

𝐿
∑ (𝑓[𝑙] −𝐿

𝑙=1

𝐹𝑖,𝑗
𝑆𝐶)

2
. |𝑋𝑖,𝑗[𝑙]| 

5. 𝐹𝑖,𝑗
𝑆𝑅 ←  ∑ 𝑋𝑖,𝑗[𝑙]𝐿

𝑙=1  

6. End For 

7. 𝐹 ← {𝐹𝑅𝑀𝑆, 𝐹𝑆𝐶 , 𝐹𝑆𝐵, 𝐹𝑆𝑅} 

 

as the foundation of our feature extraction process. 

These features have been chosen for their unique 

characteristics and potential benefits in the context of 

EEG-based emotion recognition. RMS captures the 

signal's magnitude, providing insight into the overall 

signal energy. Spectral centroid identifies the center 

of mass of the frequency spectrum, offering 

information about the dominant frequency in each 

window. Spectral bandwidth measures the spread of 

frequencies, reflecting the signal's variability. Finally, 

spectral roll-off helps differentiate between low and 

high-frequency content. The combination of these 

features enables us to capture both temporal and 

spectral aspects of EEG signals, enhancing our ability 

to discriminate emotional states with precision. The 

feature extraction method has been presented in 

Algorithm 1. 

Here 𝑓[𝑙]  represents the frequency at index 𝑙 , 

∑ 𝑋𝑖,𝑗[𝑙]𝐿
𝑙=1  represents 𝑃% of the total energy.  

Following the extraction of features, the EEG 

channels were systematically grouped into specific 

channel categories 𝐺1, 𝐺2, and 𝐺3 , driven by the 

underlying organization of the human brain. This 

grouping strategy aligns with known anatomical and 

functional divisions of the brain, allowing for a more 

biologically meaningful analysis of EEG signals in 

the context of emotion recognition. In the first 

category, encompassing frontal, parietal, central, 

temporal, and occipital regions, channels including 

𝑮𝟏: F3, F7, FC5, FC1, AF4, F4, F8, FC6, FC2, T7, 

CP1, P3, P7, Pz, CP6, CP2, P4, P8, Fp1, Fp2, AF3, 

AF4, C3, T7, Cz, C4, T8, P04, O1, Oz, PO4, and O2 

were selected [38]. These channels collectively cover 

a wide array of brain areas associated with emotional 

processing. The second category, including frontal, 

parietal, temporal, and occipital regions, features 

channels include 𝑮𝟐: Fp1, Fp2, AF3, F3, F7, FC5, 
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FC1, AF4, Fz, F4, F8, FC6, FC2, CP5, CP1, P3, P7, 

PO3, Pz, CP6, CP2, P4, P8, PO4, T7, T8, C3, Cz, C4, 

O1, O2, and Oz [39]. These channels were chosen to 

provide insight into brain activity across multiple 

areas involved in emotional responses. Lastly, the 

third category distinguishes between left frontal, right 

frontal, left parietal-temporal-occipital (left pto), and 

right parietal-temporal-occipital (right pto) regions, 

utilizing channels such as 𝑮𝟑: Fp1, AF3, F3, F7, FC5, 

FC1, C3, Cz, Fz, F4, F8, FC6, FC2, AF4, Fp2, C4, 

O1, PO3, P7, P3, CP1, CP5, T7, Oz, O2, PO4, P8, 

P4, CP2, CP6, T8, and Pz [39], [40]. This 

differentiation reflects the lateralization of certain 

emotional processes in the brain. Out of these 

primary channel groups, sub-groups 𝐺1𝑠, 𝐺2𝑠, 𝐺3𝑠 

were further created capturing the frontal, parietal, 

central, temporal, and occipital channels individually. 

By grouping channels in this manner, we aim to 

uncover the intricate neural dynamics associated with 

emotion recognition, enhancing our comprehension 

of emotional states from EEG signals. 

The brain weights have been attained by making 

use of SVM as a classification model. The feature 

channel groups have been passed through individual 

SVM models, and the corresponding weights of these 

channel groups have been recorded. This information 

helps in the selection of the desired brain regions that 

are suitable for the valence and arousal of emotional 

states. For each subgroup 𝐺1𝑠, 𝐺2𝑠, 𝐺3𝑠 , SVM 

classification 𝑋𝑖,𝑗
𝐺𝑙𝑠  was determined. SVM is used to 

train classifiers 𝐶𝑖𝑠 for each channel subgroup using 

the feature-labels pairs 𝐹𝑖,𝑗
𝐺𝑖𝑠  with an optimization 

goal determined as follows: 

 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜅𝑖,𝑗

𝑤
𝑗=1   

(1) 

 

Subject to 𝑦𝑖,𝑗 (𝑤𝑇𝐹𝑖,𝑗
𝐺𝑖 + 𝑏) ≥ 1 −  𝜅𝑖,𝑗, 𝜅𝑖,𝑗 ≥

0, 𝑗 = 1, 2, … , 𝑊  
Where 𝑤  is the weight vector, 𝐶  is the 

regularization parameter, 𝜅𝑖,𝑗 are slack variables, 𝑏 is 

the bias term.  

The outcomes of the model have been based on 

the accuracy scores.    

3.3 EEG selected channels classification 

Having successfully identified the potential brain 

regions and channels using the weighing 

methodology presented above, we have developed a 

deep learning simplified convolutional neural 

network (CNN) model on the selected channels. In 

doing so, the process of converting raw EEG data of 

the selected channels into two-dimensional (2D) 

spectrogram images was a crucial step in facilitating 

data visualization and classification. This 

transformation was achieved using the short time 

fourier transform (STFT), which is well-suited for 

converting data into time-frequency information. The 

STFT method offers a unique advantage by using 

color intensity levels to represent both temporal and 

spectral localization in the data. This transformation 

allowed us to capture the inherent spectral 

characteristics present in individual EEG channels. In 

this study, the temporal segments selected for 

analysis corresponded to the second half of each EEG 

signal, a method validated and widely used in prior 

research. The mathematical representation of the 

STFT transformation is provided by Eq. 2: 
 

𝑆𝑇𝐹𝑇 {𝑥[𝑛]} = 𝑋(𝑛, 𝜔) = ∑ 𝑥[𝑚]𝑤[𝑛 − 𝑚]𝑒−𝑗𝜔𝑚∞
𝑚=−∞   

(2) 

 

Where w[m] represents the time window used to 

extract the framed signal, e(-jωm) represents the 

frequency response of the windowed signal. By 

scaling the spectrograms, RGB pictures with 

dimensions of 224x224x3 were created. 

The convolutional neural network (CNN) 

architecture employed for emotion classification was 

adapted from our previous work [41]. This 

architecture, known for its simplicity and a lower 

number of parameters compared to prior research, 

played a pivotal role in our study. The architecture, 

depicted in Fig. 1, utilized the rectified linear unit 

(ReLU) as the activation function, the Adam 

optimizer, 150 training epochs, a batch size of 16, and 

a learning rate of 1e-4, and has been taken from our 

previous published work presented in [40]. This CNN 

architecture was chosen for its effectiveness in 

classifying emotions based on the spectrogram 

images generated from EEG data. 

This methodology enabled the extraction of 

relevant features from the EEG data, transforming it 

into a format conducive to emotion classification. 

The subsequent CNN-based classification process 

was built upon these 2D spectrogram images to 

achieve accurate emotion recognition. 

4. Result and discussion 

4.1 Brain areas weighting 

In this section, we have presented and discussed 

the resulting outcomes from the groups and 

subgroups of channels as presented in the previous 

section. The accuracy has been used as a weighting  
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Figure. 1 Simplified CNN architecture for the 2D EEG images classification 

 

Table. 1 Brain areas weighting scores 

Channel 

Groups 

Channel Subgroups 

Valence (%) Arousal (%) 

G1 [38] 

  

  

  

Frontal lobe 

F3, F7, FC5, FC1, AF4, F4, F8, FC6, FC2 64.4 66.3 

Parietal lobe 

T7, CP1, P3, P7, Pz, CP6, CP2, P4, P8 63.6 66.1 

Central lobe 

C3, T7, Cz, C4, T8 63.5 64.0 

Temporal lobe 

FP1, FP2, AF3, AF4 63 63.6 

Occipital lobe 

PO3, O1, Oz, PO4, O2 62.8 64.1 

G2 [39] 

  

  

  

Frontal lobe  

Fp1, Fp2, AF3, F3, F7, FC5, FC1, AF4, Fz, F4, 

F8, FC6, and FC2 64.6 67.5 

Parietal lobe 

CP5, CP1, P3, P7, PO3, Pz, CP6, CP2, P4, P8, 

and PO4 63.9 66.3 

Temporal lobes 

T7, T8, C3, Cz, and C4 63.5 64.1 

Occipital lobes 

O1, O2, and Oz 62.6 63.7 

G3[39], [40] 

  

  

  

Left Frontal 

Fp1, AF3, F3, F7, FC5, FC1, C3, Cz 63.6 66.3 

Right Frontal 

Fz, F4, F8, FC6, FC2, AF4, Fp2, C4 64 65.1 

Left parietal-temporal-occipital (left pto) 

O1, PO3, P7, P3, CP1, CP5, T7, Oz 64.5 66.0 

Right parietal- temporal-occipital (right pto) 

O2, PO4, P8, P4, CP2, CP6, T8, Pz 63.1 65.2 

 

 

measure for the two groups of emotional states i.e. 

valence (low and high), and arousal (low and high), 

to develop a pragmatic link between the selection of 

channels group and the emotional states. Numerous 

Subgroups G_is have been created based on the 

subsiding lobes. The groups along with their 

weighted outcomes have been presented in Table 1.  

In the analysis of channel subgroups based on 

valence and arousal accuracy rates, some subgroups 

exhibited higher performance, while others showed 

relatively lower accuracy. Among the best-

performing regions, the Frontal Lobe subgroup 

comprising channels F3, F7, FC5, FC1, AF4, F4, F8, 

FC6, and FC2 demonstrated remarkable accuracy, 

achieving a valence accuracy of 64.4% and an arousal 

accuracy of 66.3%. This result suggests that these 

channels within the frontal lobe are particularly adept 

at capturing and predicting emotional responses. 

Similarly, the frontal, parietal, central, temporal, and  
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Table. 2 Dependent-subject 2D CNN-based classification outcomes 
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G1  

  

  

  

Frontal lobe 

F3, F7, FC5, FC1, AF4, F4, F8, FC6, 

FC2 

64.4 1 92.7 

 

1 66.3 

 

1 92.4 

 

1 

Parietal lobe 

T7, CP1, P3, P7, Pz, CP6, CP2, P4, P8 

63.6 2 91.3 

 

2 66.1 

 

2 89.1 

 

2 

Central lobe 

C3, T7, Cz, C4, T8 

63.5 3 86.6 

 

3 64,1 

 

3 82 

 

 

4 

Temporal lobe 

FP1, FP2, AF3, AF4 

63 4 79.9 

 

4 63,6 

 

5 80.3 5 

Occipital lobe 

PO3, O1, Oz, PO4, O2 

62.8 5 82.2 5 64 

 

4 86.1 3 

G2 

  

  

  

Frontal lobe  

Fp1, Fp2, AF3, F3, F7, FC5, FC1, 

AF4, Fz, F4, F8, FC6, and FC2 

64.6 

 

1 95.7 1 67.5 

 

1 95.7 

 

1 

Parietal lobe 

CP5, CP1, P3, P7, PO3, Pz, CP6, CP2, 

P4, P8, and PO4 

63.9 

 

2 94 2 66.3 

 

2 95 

 

2 

Temporal lobes 

T7, T8, C3, Cz, and C4 

63.5 

 

3 75.3 3 64.1 

 

3 80.5 

 

3 

Occipital lobes 

O1, O2, and Oz 

62.6 

 

4 72.7 4 63.7 

 

4 66.4 

 

4 

G3 

  

  

  

Left Frontal 

Fp1, AF3, F3, F7, FC5, FC1, C3, Cz 

63.6 

 

3 91.3 

 

2 66.3 1 88.4 

 

4 

Right Frontal 

Fz, F4, F8, FC6, FC2, AF4, Fp2, C4 

64 

 

2 91.1 

 

3 65.1 4 89.2 

 

1 

Left parietal-temporal-occipital (left 

pto) 

O1, PO3, P7, P3, CP1, CP5, T7, Oz 

64.5 

 

1 92.7 

 

1 66 2 88.6 

 

2 

Right parietal- temporal-occipital 

(right pto) 

O2, PO4, P8, P4, CP2, CP6, T8, Pz 

63.1 

 

4 90.5 

 

4 65.2 3 88.4 

 

2 

 
 
occipital lobes subgroup, which included channels 

such as Fp1, Fp2, AF3, F3, F7, FC5, FC1, AF4, Fz, 

F4, F8, FC6, and FC2, displayed exceptional 

performance. This subgroup achieved a high valence 

accuracy of 64.6% and an impressive arousal 

accuracy of 67.5%, highlighting its effectiveness in 

emotion prediction. Additionally, the Left parietal-

temporal-occipital (left) subgroup, composed of 

channels O1, PO3, P7, P3, CP1, CP5, T7, and Oz, 

demonstrated strong valence accuracy (64.5%) and 

good arousal accuracy (66%), further underscoring 

the relevance of these channels in emotional state 

recognition. On the other hand, the analysis revealed 

some regions with lower performance. The occipital 

lobe subgroup, encompassing channels PO3, O1, Oz, 

PO4, and O2, exhibited relatively lower valence 

accuracy at 62.8% and arousal accuracy of 64.1%. 

Similarly, the occipital lobes subgroup, represented 

by channels O1, O2, and Oz, showed modest valence 

accuracy (62.6%) and arousal accuracy (63.7). 

Furthermore, the right parietal- temporal-occipital 

(right) subgroup, which included channels O2, PO4, 

P8, P4, CP2, CP6, T8, and Pz, displayed a valence 

accuracy of 63.1% and an arousal accuracy of 65.2%, 

indicating room for improvement in emotional state 

recognition within this region. Thus, specific channel 

subgroups, particularly those within the frontal and  
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Table 3. Cross-subject 2D CNN-based classification outcomes 
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G1  

  

  

  

Frontal lobe 

F3, F7, FC5, FC1, AF4, F4, F8, FC6, 

FC2 

64.4 1 92.1 1 66 

 

2 91 2 

Parietal lobe 

T7, CP1, P3, P7, Pz, CP6, CP2, P4, P8 

63.6 2 91.4 2 66.1 

 

1 91.7 1 

Central lobe 

C3, T7, Cz, C4, T8 

63.5 3 83.9 3 64.1 

 

3 82.8 3 

Temporal lobe 

FP1, FP2, AF3, AF4 

63 4 82 4 63.6 

 

5 79.6 5 

Occipital lobe 

PO3, O1, Oz, PO4, O2 

62.8 5 80.5 5 64 

 

4 80.3 4 

G2 

  

  

  

Frontal lobe  

Fp1, Fp2, AF3, F3, F7, FC5, FC1, Fp2, 

AF4, Fz, F4, F8, FC6, and FC2 

64.6 

 

1 95 1 67.5 

 

1 94.3 

 

1 

Parietal lobe 

CP5, CP1, P3, P7, PO3, Pz, CP6, CP2, 

P4, P8, and PO4 

63.9 

 

2 93.6 2 66.3 

 

2 92.7 

 

2 

Temporal lobes 

T7, T8, C3, Cz, and C4 

63.5 

 

3 83.7 3 64.1 

 

3 79.3 

 

3 

Occipital lobes 

O1, O2, and Oz 

62.6 

 

4 67.5 4 63.7 

 

4 68.1 

 

4 

G3 

  

  

  

Left Frontal 

Fp1, AF3, F3, F7, FC5, FC1, C3, Cz 

63.6 

 

3 89.6 

 

4 66.3 2 88 

 

4 

Right Frontal 

Fz, F4, F8, FC6, FC2, AF4, Fp2, C4 

64 

 

2 90.6 

 

2 65.1 4 89.2 

 

3 

Left parietal-temporal-occipital (left 

pto) 

O1, PO3, P7, P3, CP1, CP5, T7, Oz 

64.5 

 

1 91.2 

 

1 66 1 92 

 

1 

Right parietal- temporal-occipital 

(right pto) 

O2, PO4, P8, P4, CP2, CP6, T8, Pz 

63.1 

 

4 90.3 

 

3 65.2 3 91.1 

 

2 

 

 

Left parietal-temporal-occipital (left pto), showcased 

superior performance in accurately predicting 

valence and arousal while selecting occipital and 

Right parietal- temporal-occipital (right pto) 

subgroups exhibited room for enhancement. These 

findings contribute to the refinement of channel 

selection strategies for emotion recognition 

applications using EEG data. 

4.2 Intra-subject classification using CNN 

The intra-subject accuracy results presented in 

Table 2 provide valuable insights into the 

performance of different channel subgroups and their 

weighted positions. To assess the relationship 

between weighting order and classification accuracy, 

we can observe that in both valence and arousal 

prediction, the subgroup with the highest Brain 

Region (BR) weight achieved the highest accuracy. 

Specifically, the frontal, parietal, central, temporal, 

and occipital lobes subgroup secured the top 

weighting position with a BR weight of 64.6% and, 

correspondingly, achieved the highest valence 

accuracy of 95.7% and the highest arousal accuracy 

of 95.7%. This indicates a strong alignment between 

the weighting order and predictive accuracy. The 

second-best performance was observed in the Frontal 

Lobe subgroup, which had a BR weight of 64.4% and 

attained a valence accuracy of 92.7% and an arousal  
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Table 4. Performance comparison with related works in channel selection 

Article Channel Selection 

Method 

Classification 

Method 

Accuracy Dataset Description 

[28] Filter-bank CSP (FBCSP) mean 88.6 % BCI datasets, 

BCI competition 

III dataset IVa 

and BCI 

competition IV 

dataset I 

motor imagery 

(MI) activities 

[29] ReliefF algorithm Various EEG 

features 

72 % DEAP datasets  Emotion 

Recognition 

[30] Normalized mutual 

information (NMI) 

Not specified 74.4 % DEAP datasets  Emotion 

Recognition 

[35] Neuro-evolutionary 

Algorithm (NEA) 

Perceptron Neural 

Network (MPL-

NN) 

89.95% BCI competition 

IV 

motor imagery 

(MI) activities 

[32] mRMR feature selection 

algorithm 

Extreme Learning 

Machine with 

Kernel 

79.3 % DEAP datasets  Emotion 

Recognition 

[33] Patient-specific EEG 

channel selection (PE 

values) 

K nearest 

neighbors 

(KNNs), Genetic 

Algorithm (GA), 

SVM 

average 

92.42% 

CHB-MIT Scalp 

EEG Database 

epileptic 

seizures 

[34] Dynamic Channel 

Relevance (DCR) scores 

SVM 85.4%, 

80.33%, 

85.20% 

(BCI 

Competition IV- 

2008 - IIA, BCI 

Competition IV- 

dataset 1, BCI 

competition III - 

dataset IVa) 

motor imagery 

(MI) activities 

[36] R-HOLO-FM CNN  88.19% DEAP datasets  Emotion 

Recognition 

[36] N-HOLO-FM CNN  88.31% DEAP datasets Emotion 

Recognition 

[42] Brain areas: frontal lobe CNN 61%, 58% DEAP datasets Emotion 

Recognition 

[39] Brain areas: frontal lobe LSTM 62.53%, 

67.37%, 

DEAP datasets Emotion 

Recognition 

Proposed 

Model 

Weighted BR channel 

selection  

Simplified CNN 

architecture 

95.7 % 

dependent 

subject  

94.65 % 

cross-subject 

DEAP datasets Emotion 

Recognition 

 

 

accuracy of 92.4%. The Parietal, Central Lobes 

subgroup, with a BR weight of 63.6%, ranked third 

in weighting order, achieving a valence accuracy of 

91.3% and an arousal accuracy of 89.1%. 

These results emphasize the importance of 

considering channel subgroups and their 

corresponding weights when optimizing EEG-based 

emotion recognition models. The findings suggest 

that specific channel subgroups, particularly those 

encompassing multiple brain regions, can 

significantly enhance the accuracy of emotion 

prediction, holding promise for applications in 

affective computing and human-computer interaction. 

4.3 Cross-subject classification using CNN 

The cross-subject analysis of weighted BR 

subgroups, presented in Table 3, reveals interesting 

patterns in valence and arousal accuracy. To assess 

the impact of weighting orders on accuracy, we first 

examine the subgroups with the highest BR weights 

and their corresponding performance. In terms of 

valence accuracy, the frontal, parietal, temporal, and 

occipital lobes subgroup, which held the top 
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weighting position with a BR weight of 64.6% and 

67.5%, achieved the highest accuracy at 95% of 

valence. This demonstrates the consistency of high 

performance in valence prediction when this 

subgroup is given a higher weight. Notably, the 

frontal lobe in the G1 group, ranking second in 

weighting order with a BR weight of 64.4%, secured 

the second-highest valence accuracy at 92.1%. This 

suggests a close alignment between weighting order 

and valence accuracy. For arousal accuracy, the 

subgroup frontal, parietal, temporal, and occipital 

lobes also demonstrated its effectiveness by securing 

the top weighting position with a BR weight of 67.5% 

and achieving the highest arousal accuracy of 94.3%. 

This subgroup consistently outperformed others in 

both valence and arousal accuracy, emphasizing its 

significance in cross-subject emotion recognition. 

The results across different subgroups underscore 

the importance of weighting strategies in optimizing 

emotion recognition models. In the cross-subject 

scenario, certain subgroups consistently outperform 

others, offering valuable insights into the selection of 

relevant channels and their impact on prediction 

accuracy. The highest overall accuracy in both 

valence and arousal prediction was achieved by the 

frontal, parietal, temporal, and occipital lobes 

subgroup, demonstrating its robustness in capturing 

emotional responses across different subjects. 

4.4 Performance comparison 

The performance of the proposed model has been 

compared with the existing studies to determine its 

effectiveness. The articles explored in the related 

works section have been summarized in Table 4 

along with the outcomes of the proposed model. 

5. Conclusion 

The study has introduced a novel approach to 

EEG-based emotion classification, emphasizing the 

importance of selecting specific brain lobes known to 

be biologically relevant to emotional processing. By 

departing from traditional channel selection methods 

and focusing on the entire brain lobe, this approach 

has the potential to revolutionize the field of EEG 

research. It offers a more comprehensive and 

biologically informed perspective on emotion 

recognition, leading to more accurate and efficient 

classification. The study analyzed the channel's 

distribution into three main Groups and subgroups. 

By determining the highest-scored channels, the deep 

learning model has been employed to analyze the 

accuracy in the valence and arousal classes. The use 

of the DEAP dataset has demonstrated the 

effectiveness of this approach, highlighting its 

potential to improve emotion classification accuracy. 

It accuracy found in the case of intra-subject is 

95.7 %, while in the case of cross-subject is 94.65 %. 

This is significantly higher compared to the 89.95 % 

previously attained using the Neuro-evolutionary 

algorithm (NEA) channel selection method. In 

addition, this research outperforms numerous other 

studies in terms of channel selection across different 

domains in Table 4. 

The study opens up opportunities for customized 

electrode placement based on the type of emotion 

under investigation, reducing setup efforts, and 

channel requirements. Overall, this innovative 

method represents a significant step forward in the 

quest for precise and effective EEG-based emotion 

classification. It promises to enhance our 

understanding of emotional processing and 

regulation, contributing to advancements in the field 

of neuroscience and clinical applications in 

emotional intervention. 
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